Click to Translate to English Click to Translate to French  Click to Translate to Spanish  Click to Translate to German  Click to Translate to Italian  Click to Translate to Japanese  Click to Translate to Chinese Simplified  Click to Translate to Korean  Click to Translate to Arabic  Click to Translate to Russian  Click to Translate to Portuguese  Click to Translate to Myanmar (Burmese)

PANDEMIC ALERT LEVEL
123456
Forum Home Forum Home > Coronavirus Pandemic: Prepping Forums > Medical Intervention & Prevention
  New Posts New Posts RSS Feed - Camostat
  FAQ FAQ  Forum Search   Events   Register Register  Login Login

Now tracking the new emerging South Africa Omicron Variant

Camostat

 Post Reply Post Reply
Author
Message
Technophobe View Drop Down
Assistant Admin
Assistant Admin
Avatar

Joined: January 16 2014
Location: Scotland
Status: Offline
Points: 88450
Post Options Post Options   Thanks (0) Thanks(0)   Quote Technophobe Quote  Post ReplyReply Direct Link To This Post Topic: Camostat
    Posted: March 11 2020 at 7:25am

Researchers identify potential coronavirus vaccine and therapy targets

Researchers show that antibodies that can neutralize the virus that causes SARS can reduce how well the new coronavirus infects cells in laboratory studies. They also use an approved drug to reduce virus entry into cells.


Scientists nudge closer to creating a vaccine for the new coronavirus.

For live updates on the latest developments regarding the novel coronavirus and COVID-19, click here.

With global cases of COVID-19 surpassing 100,000, researchers are looking for ways to prevent new viral infections. 

The new coronavirus, called SARS-CoV-2, has strong similarities to other viruses in the coronavirus family, particularly those that cause SARS and MERS. 

Two new papers appeared recently in the journal Cell, investigating how SARS-CoV-2 infects cells.

So, how exactly does the virus gain entry to cells, and why is it important to know this?

Understanding the target molecules that facilitate viral entry into cells is paramount to identifying how to stop this process from happening.

Both papers report that SARS-CoV-2 makes use of the same mechanism for viral entry that the SARS virus (SARS-CoV) uses. 

More importantly, both research teams looked at ways of disrupting this process, using an enzyme inhibitor and antibodies against the SARS virus. 


Coronavirus infection route

The new coronavirus, SARS-CoV-2, is a type of virus called an enveloped RNA virus. 

This means that its genetic material is encoded in single-stranded RNA molecules surrounded by a cell membrane taken from the cell that it last infected. 

When enveloped viruses infect a cell, they do this using a two-stage process. 

The first step involves making a connection with a receptor on the surface of the target cell. The second is fusion with a cell membrane, either on the surface of the cell or at an internal location. 

In the case of coronaviruses, the first step requires that specific proteins in the viral envelope, called spike (S) proteins, undergo a biochemical modification. This step is called S protein priming. 

The enzymes responsible for S protein priming are potential therapeutic targets as inhibiting their mechanism may prevent a virus from being able to enter a cell. 

“Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets,” write the authors one of the new papers in Cell

The senior study author is Stefan Pöhlmann, a professor for Infection Biology at Georg-August-University and Head of the Infection Biology Unit of the German Primate Center, both in Göttingen in Germany.

Pöhlmann and his colleagues show evidence that the SARS-CoV-2 S protein binds to the same receptor as the SARS virus S protein. The receptor is called angiotensin-converting enzyme 2 or ACE2. 

In fact, an earlier paper in the journal Nature had already implicated ACE2 as the receptor that allows SARS-CoV-2 to infect cells. 

In addition to providing further evidence of ACE2’s role, Pöhlmann and the team also saw that, like SARS-CoV, the new coronavirus S protein uses an enzyme called TMPRSS2 for S protein priming. 

Importantly, they showed that “camostat mesylate, an inhibitor of TMPRSS2, blocks SARS-CoV-2 infection of lung cells.”

Camostat mesylate is a drug approved in Japan for the treatment of pancreatitis. The authors explain in the paper:

Source:   https://www.medicalnewstoday.com/articles/researchers-identify-potential-coronavirus-vaccine-and-therapy-targets#Coronavirus-infection-route

More sources of camostat info:


https://en.wikipedia.org/wiki/Camostat

https://www.news18.com/news/tech/hold-the-press-scientists-may-have-found-a-way-to-prevent-coronavirus-spread-2531091.html

https://www.thailandmedical.news/news/coronavirus-drug-research-german-researchers-identify-japanese-drug,-camostat-mesylate-that-could-be-repurposed-to-treat-covid-19

And a supplier:   https://www.tocris.com/products/camostat-mesylate_3193

Yet again the hopefull drug is a protease inhibitor.

How do you tell if a politician is lying?
His lips or pen are moving.
Back to Top
 Post Reply Post Reply
  Share Topic   

Forum Jump Forum Permissions View Drop Down